The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices
نویسندگان
چکیده
Given an ensemble of N × N random matrices, a natural question to ask is whether or not the empirical spectral measures of typical matrices converge to a limiting spectral measure as N → ∞. While this has been proved for many thin patterned ensembles sitting inside all real symmetric matrices, frequently there is no nice closed form expression for the limiting measure. Further, current theorems provide few pictures of transitions between ensembles. We consider the ensemble of symmetric m-block circulant matrices with entries i.i.d.r.v. These matrices have toroidal diagonals periodic of period m. We view m as a “dial” we can “turn” from the thin ensemble of symmetric circulant matrices, whose limiting eigenvalue density is a Gaussian, to all real symmetric matrices, whose limiting eigenvalue density is a semi-circle. The limiting eigenvalue densities fm show a visually stunning convergence to the semi-circle as m → ∞, which we prove. In contrast to most studies of patterned matrix ensembles, our paper gives explicit closed form expressions for the densities. We prove that fm is the product of a Gaussian and a certain even polynomial of degree 2m − 2; the formula is the same as that for the m ×m Gaussian Unitary Ensemble (GUE). The proof is by derivation of the moments from the eigenvalue trace formula. The new feature, which allows us to obtain closed form expressions, is converting the central combinatorial problem in the moment calculation into an equivalent counting problem in algebraic topology. We end with a generalization of the m-block circulant pattern, dropping the assumption that the m random variables be distinct. We prove that the limiting spectral distribution exists and is determined by the pattern of the independent elements within an m-period, depending on not only the frequency at which each element appears, but also the way the elements are arranged.
منابع مشابه
The Limiting Spectral Measure for the Ensemble of Generalized Real Symmetric Block m-Circulant Matrices
Given an ensemble of N × N random matrices with independent entries chosen from a nice probability distribution, a natural question is whether the empirical spectral measures of typical matrices converge to some limiting measure as N → ∞. It has been shown that the limiting spectral distribution for the ensemble of real symmetric matrices is a semi-circle, and that the distribution for real sym...
متن کاملDistribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices
Consider the ensemble of real symmetric Toeplitz matrices, each independent entry an i.i.d. random variable chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous investigations showed that the limiting spectral measure (the density of normalized eigenvalues) converges weakly and almost surely, independent of p, to a distribution which is almos...
متن کاملThe Spectral Laws of Hermitian Block-matrices with Large Random Blocks
We are going to study the limiting spectral measure of fixed dimensional Hermitian block-matrices with large dimensional Wigner blocks. We are going also to identify the limiting spectral measure when the Hermitian block-structure is Circulant. Using the limiting spectral measure of a Hermitian Circulant block-matrix we will show that the spectral measure of a Wigner matrix with k−weakly depend...
متن کاملAn application of the modified Leverrier-Faddeev algorithm to the singular value decomposition of block-circulant matrices and the spectral decomposition of symmetric block- circulant matrices
The Leverrier-Faddeev algorithm, as modified by Gower (1980), is little-known but is useful for deriving the algebraic, rather than numerical, spectral structure of matrices occurring in statistical methodology. An example is given of deriving explicit forms for the singular value decomposition of any block-circulant matrix and the spectral decomposition of any symmetric block-circulant matrix....
متن کاملEigenvectors of block circulant and alternating circulant matrices
The eigenvectors and eigenvalues of block circulant matrices had been found for real symmetric matrices with symmetric submatrices, and for block circulant matrices with circulant submatrices. The eigenvectors are now found for general block circulant matrices, including the Jordan Canonical Form for defective eigenvectors. That analysis is applied to Stephen J. Watson’s alternating circulant m...
متن کامل